Sunday, October 30, 2011

Simple AM Transmitter Circuit

AM transmitter circuit that can transmit your audios to your backyard.This circuit is designed with limited the power output to match the FCC regulations and still produces enough amplitude modulation of voice in the medium wave band to satisfy your personal needs. You will love this. 

The circuit has two parts , an audio amplifier and a radio frequency oscillator. The oscillator is built around Q1 (BC109) and related components. The tank circuit with inductance L1 and capacitance VC1 is tunable in the range of 500kHz to 1600KHz. 

These components can be easily obtained from your old medium wave radio. Q1 is provided with regenerative feedback by connecting the base and collector of Q1 to opposite ends of the tank circuit. C2 ,the 1nF capacitance , couples signals from the base to the top of L1, and C4 the 100pF capacitance ensures that the oscillation is transfered from collector, to the emitter, and through the internal base emitter resistance of the transistor Q2 (BC 109) , back to the base again. 

The resistor R7 has a vital part in this circuit. It ensures that the oscillation will not be shunted to ground trough the very low value internal emitter resistance, re of Q1(BC 109), and also increases the input impedance such that the modulation signal will not be shunted to ground.

Q2 is wired as a common emitter RF amplifier, C5 decouples the emitter resistance and unleashes full gain of this stage. The microphone can be electret condenser microphone and the amount of AM modulation can be adjusted by the 4.7 K variable resistanceR5.
Continue Reading here[...]

Tuesday, October 25, 2011

SIMPLE SWITCH TIME DELAY CIRCUIT DIAGRAM

SIMPLE SWITCH TIME DELAY CIRCUIT DIAGRAM

This Switch On Time Delay circuit should work with most any 12 volt DC relay that has a coil resistance of 75 ohms or more. The 10K resistor connected across the supply provides a discharge path for the capacitor when power is turned off and is not needed if the power supply already has a bleeder resistor.The circuit that takes advantage of the emitter/base breakdown voltage of an ordinary bi-polar transistor. The reverse connected emitter/base junction of a 2N3904 transistor is used as an 8 volt zener diode which creates a higher turn-on voltage for the Darlington connected transistor pair. Most any bi-polar transistor may be used, but the zener voltage will vary from about 6 to 9 volts depending on the particular transistor used. Time delay is roughly 7 seconds using a 47K resistor and 100uF capacitor and can be reduced by reducing the R or C values. Longer delays can be obtained with a larger capacitor, the timing resistor probably shouldn't be increased past 47K. 
Continue Reading here[...]

Monday, October 10, 2011

SIMPLE SWITCH-OFF TIME DELAY SCHEMATIC DIAGRAM

SIMPLE SWITCH-OFF TIME DELAY SCHEMATIC DIAGRAM

The two circuits di atas illustrate opening a relay contact a short time after the ignition or ligh switch is turned off. The capacitor is charged and the relay is closed when the voltage at the diode anode rises to 12 volts. The circuit on the left is a common collector or emitter follower and has the advantage of one less part since a resistor is not needed in series with the transistor base. However the voltage across the relay coil will be two diode drops less than the supply voltage, or about 11 volts for a 12.5 volt input. The common emitter configuration on the right offers the advantage of the full supply voltage across the load for most of the delay time, which makes the relay pull-in and drop-out voltages less of a concern but requires an extra resistor in series with transistor base. The common emitter (circuit on the right) is the better circuit since the series base resistor can be selected to obtain the desired delay time whereas the capacitor must be selected for the common collector (or an additional resistor used in parallel with the capacitor).

The time delay for the common emitter will be approximately 3 time constants or 3*R*C. The capacitor/resistor values can be worked out from the relay coil current and transistor gain. For example a 120 ohm relay coil will draw 100 mA at 12 volts and assumming a transistor gain of 30, the base current will be 100/30 = 3 mA. The voltage across the resistor will be the supply voltage minus two diode drops or 12-1.4 = 10.6. The resistor value will be the voltage/current = 10.6/0.003 = 3533 or about 3.6K. The capacitor value for a 15 second delay will be 15/3R = 1327 uF. We can use a standard 1000 uF capacitor and increase the resistor proportionally to get 15 seconds.
Continue Reading here[...]

Saturday, October 8, 2011

SMOKE DETECTOR CIRCUIT USING LDR SCHEMATIC DIAGRAM

SMOKE DETECTOR CIRCUIT USING LDR SCHEMATIC DIAGRAM

When there is no smoke the light from the bulb will be directly falling on the LDR.The LDR resistance will be low and so the voltage across it (below .6V).The transistor will be OFF and nothing happens. When there is sufficient smoke to mask the light from falling on LDR, the LDR resistance increases and so do the voltage across it.Now the transistor will switch to ON.This gives power to the IC1 and it outputs 5V.This powers the tone generator IC2 to play a music.This music will be amplified by IC3 to drive the speaker.

The diode D1 and D2 in combination drops 1.4 V to give the rated voltage (3.5V ) to UM66 .UM 66 cannot withstand more than 4V.
Continue Reading here[...]

AM Receiver Circuit Diagram Using ZN414 IC

A.M. Antenna coil and MW gang connected in parallel. One common point of this parallel circuit connected to the IC ZN414 pin number 2.

Another common point of that parallel circuit connected with two resistors (100kΩ, 1kΩ) in series. A capacitor is connected with the common point of resistors (100kΩ, 1kΩ).  A capacitor is connected in series with base of the transistor and the pin number 1 of the ZN414.

One end of the 10kΩ resistor is connected with the collector point of the transistor BC549 and another end is connected with the power supply +Vcc.

And one end of the 100kΩ resistor is connected with the collector and another end connected with base. 105pF capacitor is connected between collector and ground. Pin 3 of IC ZN414 and emitter of the transistor is connected to the ground.

 Required Instrument
  • IC ZN 414.
  • Capacitor(105pF×1,104pF×2,103pF×1)
  • MW Gang
  • Resistor(100kΩ×2,10kΩ×1,1kΩ×1,470Ω×1)
  • AM antenna
  • Transistor(BC549)

Continue Reading here[...]